Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Innate and learned taste/flavor preferences to chemical stimuli in weanling rats are not fully understood. Our previous study showed that weanling rats could establish conditioned flavor preferences when low, but not high, concentrations of sucrose solutions were used as associative rewarding stimuli. Here, we examined whether 3-week-old rats could acquire flavor learning when the rewarding stimulus was saccharin, a non-nutritive artificial sweetener. In the acquisition session, they consumed water with a flavor (cherry or grape) and 0.1% sodium saccharin with another flavor (grape or cherry) for 15 min daily on alternative days over 6 consecutive days. The subsequent test session revealed significant preferences for the flavor previously associated with saccharin. However, they failed to retain the preference when retested in adulthood at the age of 20 weeks. These behavioral results were similar to those previously demonstrated when 2% sucrose was used as an associative sweetener. Although these 2 solutions were equally preferred, the taste quality may not be the same because the weanling rats showed neophobia to 0.1% saccharin and a larger chorda tympani response than 2% sucrose. The present study showed that a conditioned flavor preference was established to saccharin in weanling rats on the basis of flavor-taste association.
Innate and learned taste/flavor preferences to chemical stimuli in weanling rats are not fully understood. Our previous study showed that weanling rats could establish conditioned flavor preferences when low, but not high, concentrations of sucrose solutions were used as associative rewarding stimuli. Here, we examined whether 3-week-old rats could acquire flavor learning when the rewarding stimulus was saccharin, a non-nutritive artificial sweetener. In the acquisition session, they consumed water with a flavor (cherry or grape) and 0.1% sodium saccharin with another flavor (grape or cherry) for 15 min daily on alternative days over 6 consecutive days. The subsequent test session revealed significant preferences for the flavor previously associated with saccharin. However, they failed to retain the preference when retested in adulthood at the age of 20 weeks. These behavioral results were similar to those previously demonstrated when 2% sucrose was used as an associative sweetener. Although these 2 solutions were equally preferred, the taste quality may not be the same because the weanling rats showed neophobia to 0.1% saccharin and a larger chorda tympani response than 2% sucrose. The present study showed that a conditioned flavor preference was established to saccharin in weanling rats on the basis of flavor-taste association.
Peripheral taste neurons exhibit functional, genetic, and morphological diversity, yet understanding how or if these attributes combine into taste neuron types remains unclear. In this study, we used male and female mice to relate taste bud innervation patterns to the function of a subset of proenkephalin-expressing (Penk+) taste neurons. We found that taste arbors (the portion of the axon within the taste bud) stemming from Penk+ neurons displayed diverse branching patterns and lacked stereotypical endings. The range in complexity observed for individual taste arbors from Penk+ neurons mirrored the entire population, suggesting that taste arbor morphologies are not primarily regulated by neuron type. Notably, the distinguishing feature of arbors from Penk+ neurons was their propensity to come within 110 nm (in apposition with) different types of taste-transducing cells within the taste bud. This finding is contrary to the expectation of genetically defined taste neuron types that functionally represent a single stimulus. Consistently, further investigation of Penk+ neuron function revealed that they are more likely to respond to innately aversive stimuli -sour, bitter and high salt concentrations - as compared to the full taste population. Penk+ neurons are less likely to respond to non-aversive stimuli -sucrose, umami, and low salt- compared to the full population. Our data support the presence of a genetically defined neuron type in the geniculate ganglion that is responsive to innately aversive stimuli. This implies that genetic expression might categorize peripheral taste neurons into hedonic groups, rather than simply identifying neurons that respond to a single stimulus.Significance StatementPeripheral taste neuron coding has been heavily debated. Our study delves into this issue by leveraging genetic expression in a specific neuron subset to relate peripheral innervation patterns to functional taste responses. We examined a taste neuron type that appears to be in apposition with multiple taste-transducing cell types and responds to innately aversive concentrations of sour, bitter, and high NaCl stimuli. These collective observations suggest that genetic markers can delineate groups of neurons sharing similar hedonic responses rather than categorizing neurons solely based on individual taste qualities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.