2021
DOI: 10.48550/arxiv.2102.03265
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Diversification in Session-based News Recommender Systems

Alireza Gharahighehi,
Celine Vens

Abstract: Recommender systems are widely applied in digital platforms such as news websites to personalize services based on user preferences. In news websites most of users are anonymous and the only available data is sequences of items in anonymous sessions. Due to this, typical collaborative filtering methods, which are highly applied in many applications, are not effective in news recommendations. In this context, session-based recommenders are able to recommend next items given the sequence of previous items in the… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?