Smart Technology is a quickly and constantly evolving concept; it has different applications that cover a wide range of areas, such as healthcare, education, business, agriculture, and manufacturing. An effective application of these technologies increases productivity and performance within complex systems. On one side, trends show a lack of appeal for rural environments as people prefer to move to cities, looking for better opportunities and lifestyles. On the other side, recent studies and reports show that the attractiveness of rural areas as places with opportunities is increasing. Sustainable solutions are needed to enhance development in the rural context, and technological innovation is expected to lead and support the stability for people and organizations in rural regions. While Smart City is progressively becoming a reality and a successful model for integrating Smart Technology into different aspects of everyday life, its effective application in a rural context according to a Sustainable Development approach is not yet completely defined. This study adopts comparative and categorial content analysis to address the different applications and the specific characteristics of rural regions, which often present significant peculiarities depending on the country and the context. The main goal is to investigate and discuss how the Smart City model may be adopted and effectively applied within rural contexts, looking at major gaps and challenges. Additionally, because of the complexity of the topic, we provide an overview of the current adoption of Smart Technology in the different applications in rural areas, including farming, education, business, healthcare, and governance. The study highlights the huge difficulties in rural life and the potentiality of Smart Technology to enhance their Sustainable Development, which is still challenging. While the holistic analysis clearly points out a gap, there is no specific strategic roadmap to re-use or adapt existing models, such as Smart City. The study does not address fine-grained indicators.