Compartmentalization of proteases
enables spatially and temporally
controlled protein degradation in cells. Here we show that an engineered
lumazine synthase protein cage, which possesses a negatively supercharged
lumen, can exploit electrostatic effects to sort substrates for an
encapsulated protease. This proteasome-like nanoreactor preferentially
cleaves positively charged polypeptides over both anionic and zwitterionic
substrates, inverting the inherent substrate specificity of the guest
enzyme approximately 480 fold. Our results suggest that supercharged
nanochambers could provide a simple and potentially general means
of conferring substrate specificity to diverse encapsulated catalysts.