The genus Brassica belongs to the plant family Brassicaceae, which includes many important crop species that are used as oilseed, condiments, or vegetables throughout the world. Brassica plants comprise many diverse species, and each species contains rich morphotypes showing extreme traits. Brassica species experienced an extra whole genome triplication (WGT) event compared with the model plant Arabidopsis thaliana. Whole genome sequencing of the Brassica species Brassica rapa, Brassica oleracea and others demonstrated that WGT plays an important role in the speciation and morphotype diversification of Brassica plants. Comparative genomic analysis based on the genome sequences of B. rapa and A. thaliana clearly identified the WGT event and further demonstrated that the translocated Proto-Calepine Karyotype (tPCK, n57) was the diploid ancestor of the three subgenomes in B. rapa. Following WGT, subsequent extensive genome fractionation, block reshuffling and chromosome reduction accompanied by paleocentromere descent from the three tPCK subgenomes during the rediploidization process produced stable diploid species. Genomic rearrangement of the diploid species and their hybridization then contributed to Brassica speciation. The subgenome dominance effect and biased gene retention, such as the over-retention of auxin-related genes after WGT, promoted functional gene evolution and thus propelled the expansion of rich morphotypes in the Brassica species. In conclusion, the WGT event initiated subsequent genomic and gene-level evolution, which further drove Brassica speciation and created rich morphotypes in each species. GENUS BRASSICA IN BRASSICACEAE Plants of the genus Brassica are grouped into the tribe Brassiceae, which belongs to the plant family Brassicaceae. Brassicaceae comprises a large family of plants that exhibit common and distinct features in their flowers. The flowers have cruciform petals and six stamens, two of which are short outer stamens. In total, Brassicaceae is composed of 3709 species and 338 genera, 1 with 308 of the 338 genera further assigned to 44 tribes.2 Among the abundant Brassicaceae species, the genus Brassica is important because it contains many economically valuable crops that are used as oilseeds, condiments, and culinary vegetables. Brassica species share an additional common feature in that they all experienced an extra whole genome triplication (WGT) event, which occurred approximately 9-15 million years ago 3,4 or even approximately 28 million years ago.
5-7THE U'S TRIANGLE MODEL DESCRIBES THE RELATIONSHIP AMONG BRASSICA CROPS Six species of the genus Brassica are used widely throughout the world as oilseed, condiments, fodder or vegetable crops. Three of these species are diploid (Brassica rapa, n510; B. nigra, n58; and B. oleracea, n59), whereas the other three are allotetraploids (B. juncea, n518; B. napus, n519; B. carinata, n517) derived from each pair of the three diploid species. The genetic relationships of these species were identified and confirmed by extensive experi...