Noroviruses are the causative agents of the majority of viral gastroenteritis outbreaks in humans. During the past 15 years, noroviruses of genotype GGII.4 have caused four epidemic seasons of viral gastroenteritis, during which four novel variants (termed epidemic variants) emerged and displaced the resident viruses. In order to understand the mechanisms and biological advantages of these epidemic variants, we studied the genetic changes in the capsid proteins of GGII.4 strains over this period. A representative sample was drawn from 574 GGII.4 outbreak strains collected over 15 years of systematic surveillance in The Netherlands, and capsid genes were sequenced for a total of 26 strains. The three-dimensional structure was predicted by homology modeling, using the Norwalk virus (Hu/NoV/GGI.1/Norwalk/1968/US) capsid as a reference. The highly significant preferential accumulation and fixation of mutations (nucleotide and amino acid) in the protruding part of the capsid protein provided strong evidence for the occurrence of genetic drift and selection. Although subsequent new epidemic variants differed by up to 25 amino acid mutations, consistent changes were observed in only five positions. Phylogenetic analyses showed that each variant descended from its chronologic predecessor, with the exception of the 2006b variant, which is more closely related to the 2002 variant than to the 2004 variant. The consistent association between the observed genetic findings and changes in epidemiology leads to the conclusion that population immunity plays a role in the epochal evolution of GGII.4 norovirus strains.Since the beginning of viral gastroenteritis outbreak surveillance in the early 1990s, noroviruses have become recognized as the major cause of reported outbreaks of acute viral gastroenteritis worldwide. Noroviruses form a genus within the family Caliciviridae and are genetically and antigenically highly variable. Currently, five distinct genogroups (GGs) are recognized. Strains belonging to GGI, GGII, and GGIV are known to cause infections in humans. The GGs have been subdivided further into genotypes, defined by a minimum amino acid sequence identity over the complete capsid sequence of 80% (1).The strains most commonly identified as the cause of outbreaks belong to genotype GGII.4. In The Netherlands, this was the case for 68% of all norovirus outbreaks that were characterized during 12 years of surveillance and for up to 81% of all health care-related outbreaks. Since their first detection in The Netherlands in January 1995, the GGII.4 strains have consistently been present in the Dutch population (46). These observations are in agreement with those of other surveillance studies worldwide (3,4,15,17,29,36,55).During the past 15 years, four epidemic norovirus seasons have occurred, in the winters of 1995-1996, 2002-2003, 2004-2005, and 2006-2007. These worldwide epidemics were invariantly caused by the predominant genotype, GGII.4, and were attributed to the emergence of new variant lineages of this genotype (4,3...