Despite over 100 years of digenean trematode parasite species descriptions, from a wide diversity of vertebrate and invertebrate host species, our ability to recognize the diversity of trematode species within a single lake remains an incredible challenge. The most challenging aspect is the identification of species from larval stages derived from intermediate hosts, due to the disjointed data of adult worm morphological descriptions, from which species are named, and links to corresponding molecular identifiers in depauperate databases. Cryptic species also play a significant role in the challenge of linking trematode larvae to adults, species identifications, and estimating diversity. Herein, we utilize a large, longitudinal dataset of snail first‐intermediate host infection data from lakes in Alberta, Canada, to infer trematode larval diversity using molecular phylogenetics and snail host associations. From our assessments, we uncover a diversity of 79 larval trematode species among just five snail host species. Only 14 species were identified to a previously described species, while the other 65 species are either cryptic or otherwise unrepresented by mitochondrial genes in GenBank. This study currently represents the largest and most diverse singular molecular survey of trematode larval fauna composed of over one thousand mitochondrial sequences. Surprisingly, rarefaction analyses indicate we have yet to capture the complete diversity of trematodes from our sampling area.