An increasing number of marine mammal studies on physiology, behaviour and ecology rely on data, which have been collected from back-mounted devices, such as bio-logging tags and satellite transmitters. However, external devices may influence an animal's hydrodynamics, behaviour and energy expenditure and, therefore, can impede the individual animal. To investigate the influence of external devices on seals, the water flow along a grey seal was simulated using computational fluid dynamics calculations. The simulations revealed several changes in forces and moments and thus balance, due to this device. The investigated satellite transmitter creates an average 12% increase of the drag coefficient. Additionally, there are significant relative transmitter-induced increases in pitching moment (32%) and lift (240%). The simulations also showed that the transmitter generates areas of decreased wall shear stress on the seal's back. The results of this study demonstrate that external devices can change the hydrodynamics of the seal, which is expected to alter the seal's physiology and behaviour and its use of the ecosystem. Long-term attachment may have adverse effects on the animal's welfare. It is important to take these effects into consideration when studying tagged seals; otherwise, the value of the data obtained will be poor. Therefore, interpretations and extrapolations regarding 'natural behaviour' of animals in their 'natural environment' should only be made with great caution.