2017
DOI: 10.1007/s10468-017-9739-3
|View full text |Cite
|
Sign up to set email alerts
|

Division Algebras with Left Algebraic Commutators

Abstract: Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element a ∈ D is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a 0 + a 1 x + · · · + a n x n (resp. right polynomial a 0 +xa 1 +· · ·+x n a n ) over K such that a 0 +a 1 a+· · ·+a n a n = 0 (resp. a 0 +aa 1 +· · ·+a n a n ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

2
5
0
2

Year Published

2019
2019
2021
2021

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(9 citation statements)
references
References 11 publications
2
5
0
2
Order By: Relevance
“…In the case n = 1, both results have been proved Chebotar et al in [6,Theorem 3,theorem 6], and recently again by the authors and S. Akbari in [1, Theorem 6, Theorem 7]. Both [1,6] and the current paper use rational polynomial identities in proving the aforementioned results. The idea is simple and clever: The key is a certain (non-commutative) polynomial g n (x, y 1 , .…”
Section: Preliminarysupporting
confidence: 61%
See 3 more Smart Citations
“…In the case n = 1, both results have been proved Chebotar et al in [6,Theorem 3,theorem 6], and recently again by the authors and S. Akbari in [1, Theorem 6, Theorem 7]. Both [1,6] and the current paper use rational polynomial identities in proving the aforementioned results. The idea is simple and clever: The key is a certain (non-commutative) polynomial g n (x, y 1 , .…”
Section: Preliminarysupporting
confidence: 61%
“…The following result is the goal of this section. Note that the same result as Theorem 7, however, follows from the case n = 1, proved in [1] and [6], since by a theorem of Amitsur and Rowen D 1 = D 2 = D 3 = . .…”
Section: One Can Easily Verify Thatmentioning
confidence: 52%
See 2 more Smart Citations
“…Khái niệm đại số trên vành chia con đã từng được đề cập trong ( [1], Chương 7) nhằm nghiên cứu nghiệm của đa thức trên vành chia. Riêng lớp vành chia đại số trên vành chia con của nó cũng được nghiên cứu bởi nhiều nhà toán học lớn như I. N. Herstein và C. Faith (xem, chẳng hạn trong [2], [3]) và gần đây nó nhận được sự quan tâm nhiều hơn (xem [4]- [7]). Một trong những vấn đề mà ta quan tâm là khái niệm đại số phải và đại số trái có trùng nhau không?…”
unclassified