Abstract:We study Diophantine arithmetic properties of birational divisors in conjunction with concepts that surround K-stability for Fano varieties. There is also an interpretation in terms of the barycentres of Newton-Okounkov bodies. Our main results show how the notion of divisorial instability, in the sense of K. Fujita, implies instances of Vojta's Main Conjecture for Fano varieties. A main tool in the proof of these results is an arithmetic form of Cartan's Second Main Theorem that has been obtained by M. Ru and… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.