Sexual and asexual reproduction is ubiquitous in eukaryotes. PI3K/AKT signaling pathway can modulate sexual reproduction in mammals. However, this signaling pathway modulating sexual and asexual reproduction in fungi is scarcely understood. SeASF1, a SeH4 chaperone, could manipulate sexual and asexual reproduction of Stemphylium eturmiunum. SeDJ-1, screened from SeΔasf1 transcriptome, was confirmed to regulate sexual and asexual development by RNAi, of which the mechanism was demonstrated by detecting transcriptional levels and protein interactions of SeASF1, SeH4 and SeDJ-1 by qRT-PCR, and Y2H, Co-IP and Pull-down, respectively. SeASF1 coupling SeH4 bound SeDJ-1 to arouse the sexual and asexual activity. In S. eturmiunum genome, SeDJ-1 was upstream while SeGSK3 was downstream in PI3K/AKT signaling pathway. Moreover, SeDJ-1 interacted with SePI3K or SeGSK3 in vivo and in vitro. Significantly, SeDJ-1 or SePI3K could effectively stimulate sexual activity alone, but SePI3K could recover the sexual development of SiSeDJ-1.SeDJ-1-M6 was a critical segment for interaction of SeDJ-1 with SePI3K. SeDJ-1-M6 played a critical role in irritating sexual reproduction in SiSePI3K, which further uncovered the regulated mechanism of SeDJ-1. SeASF1 coupling SeH4 motivates SeDJ-1 to arouse SePI3K involved in sexual reproduction. Thus, SeASF1 can activate PI3K/AKT signaling pathway to regulate sexual and asexual development in filamentous ascomycete.