Im Rahmen dieser Arbeit wurden verschiedene metabolische Anpassungsmechanismen des humanpathogenen Bakteriums Acinetobacter baumannii an seinen Wirt untersucht. Im ersten Teil wurde die Rolle von verschiedenen Trimethylammoniumverbindungen (Cholin, Glycinbetain und Carnitin) und den zugehörigen Aufnahmesystemen, sowie ihren Stoffwechselwegen während dieses Prozesses analysiert. Für die Analyse der Transportsysteme wurde eine markerlose Vierfachmutante (Δbcct) von A. baumannii generiert, sodass alle bekannten Transportsysteme für die genannten Verbindungen deletiert vorlagen. Wachstumsversuche mit dieser Mutante zeigten, dass es in A. baumannii keine weiteren Transporter für die Aufnahme von Cholin gibt, jedoch weitere primär aktive oder sekundär aktive Transporter für die Aufnahme von Glycinbetain. Weiterhin konnten innerhalb dieser Arbeit die KM-Werte der Transporter bestimmt werden. Verschiedene Virulenz- und Infektionsanalysen führten zu dem Schluss, dass die Transporter keine Rolle bei der Virulenz von A. baumannii spielen. In Genomanalysen konnten die Gene, die für die Enzyme des Oxidationsweges von Cholin zu Glycinbetain kodieren identifiziert werden (Cholin-Dehydrogenase (betA), GlycinbetainAldehyd-Dehydrogenase (betB) und ein potenzieller Regulator (betI)). Es wurden Deletionsmutanten innerhalb dieses Genclusters generiert, mit dessen Hilfe gezeigt werden konnte, dass Cholin unter Salzstress ausschließlich als Vorläufer für das kompatible Solut Glycinbetain fungiert und nicht als kompatibles Solut von A. baumannii genutzt werden kann. Virulenz- und Infektionsstudien mit den Deletionsmutanten zeigten, dass der Cholin-Oxidationsweg keine Rolle bei der Virulenz von A. baumannii spielt. Die Cholin-Dehydrogenase BetA wurde zusätzlich in E. coli produziert und anschließend mittels NiNTA-Affinitätschromatographie aufgereinigt. Die biochemische Charakterisierung des Enzyms zeigte, dass BetA membranständig ist und die höchste Aktivität bei einem pH-Wert von 9,0 hat. Salze wie NaCl oder KCl hatten keinen Effekt auf die Aktivität des Enzyms, während Glutamat die Aktivität stimulierte. Weiterhin konnte FAD als Cofaktor identifiziert werden und der KM-Wert ermittelt werden. Zudem konnte gezeigt werden, dass die Oxidation von Cholin zu Glycinbetain unter isoosmotischen Bedingungen zu einem Anstieg der ATP-Konzentration in A. baumannii-Zellsuspensionen führt und damit, dass Cholin als alternative Energiequelle genutzt wird. Das Phospholipid Phosphatidylcholin konnte als natürliche Cholinquelle identifiziert werden. Eine Rolle der Phospholipasen D bei der Abspaltung der Cholin-Kopfgruppe des Phosphatidylcholins konnte ausgeschlossen werden. Die Gene für die Oxidation von Cholin zu Glycinbetain werden ausschließlich in Anwesenheit von Cholin exprimiert, jedoch unabhängig von der extrazellulären Salzkonzentration. Diese Studien zeigten, dass der Cholin-Oxidationsweg eine Rolle in der metabolischen Adaptation von A. baumannii an den Wirt spielt. Phosphatidylcholin kann hier als natürliche Cholinquelle im Wirt genutzt werden, da die Wirtsmembranen aus bis zu 70 % Phosphatidylcholin bestehen. Transportstudien mit Carnitin führten zu dem Schluss, dass der Transporter Aci01347 aus A. baumannii neben Cholin ebenfalls Carnitin transportiert. Wachstumsversuche mit einer aci01347-Mutante bestätigen, dass Aci01347 essenziell für die Aufnahme und anschließende Verwertung von Carnitin als Kohlenstoffquelle ist. Es konnte weiterhin gezeigt werden, dass das Transportergen mit essenziellen Genen für den Carnitin-Abbau in einem Operon liegt. Für die Analyse des Abbauweges von Carnitin wurden markerlose Deletionsmutanten innerhalb des Operons generiert. In Wachstumsstudien mit diesen Mutanten konnte der Abbauweg aufgeklärt werden und der Regulator des Operons identifiziert werden. Carnitin wird hier über Trimethylamin und Malat-Semialdehyd zu D-Malat umgewandelt und anschließend über Pyruvat in den TCA-Zyklus eingespeist. Der Regulator wurde zusätzlich in E. coli produziert und mittels Ni-NTA-Affinitätschromatographie aufgereinigt. Mithilfe von EMSA-Studien konnte die Bindestelle des Regulators auf eine 634 Bp lange DNA-Sequenz stromaufwärts des CarnitinOperons eingegrenzt werden. Durch Transkriptomanalysen konnte gezeigt werden, dass bei Wachstum mit Acetylcarnitin, Carnitin und D-Malat die Expression des Carnitin-Operons induziert wurde. Darüber hinaus wurden die Gene konservierter Aromatenabbauwege wie z. B. des Homogentisatweges, des Phenylacetatweges und des Protocatechuat-Abbaus, verstärkt exprimiert. In G. mellonellaVirulenzstudien konnte eine Rolle des Abbaus von Carnitin bei der Virulenz von A. baumannii nachgewiesen werden. Zusätzlich konnte dieser Effekt dem entstehenden Trimethylamin zugesprochen werden...