Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Development of any therapeutic modality can be facilitated by the use of the appropriate animal models to assess its efficacy. This report primarily will focus on our studies using the F98 and 9L rat glioma models to evaluate the effectiveness of boron neutron capture therapy (BNCT) of brain tumors. Following intracerebral implantation the biological behavior of each tumor resembles that of human high grade gliomas in a number of ways. In both models, glioma cells were implanted intracerebrally into syngeneic Fischer rats and approximately 10-14 days later BNCT was initiated at the Brookhaven National Laboratory Medical Research Reactor. Two low molecular weight (M(r) < 210Da) 10B-containing drugs, boronophenylalanine (BPA) and/or sodium borocaptate (BSH) were used as capture agents, either alone or in combination with each other. The 9L gliosarcoma, which has been difficult to cure by means of either chemo- or radiotherapy alone, was readily curable by BNCT. The best survival data were obtained using BPA at a dose of 1200 mg/kg (64.8mg 10B), administered intraperitoneally (i.p.), with a 100% survival rate at 8 months. In contrast, the F98 glioma has been refractory to all therapeutic modalities. Tumor bearing animals, which had received 500 mg/kg (27 mg 10B) of BPA, or an equivalent amount of BSH i.v., had mean survival time (MST) of 37 and 33 days, respectively, compared to 29 days for irradiated controls. The best survival data with the F98 glioma model were obtained using BPA + BSH in combination, administered intra-arterially via the internal carotid artery (i.c.) with hyperosmotic mannitol induced blood-brain barrier disruption (BBB-D). The MST was 140 days with a cure rate of 25%, compared to a MST of 73 days with a 5% cure rate without BBB-D, and 41 days following i.v. administration of both drugs. A modest but significant increase in MST also was observed in rats that received intracarotid (i.c.) BPA in combination with Cereport (RMP-7), which produced a pharmacologically mediated opening of the BBB. Studies also have been carried out with the F98 glioma to determine whether an X-ray boost could enhance the efficacy of BNCT, and it was shown that there was a significant therapeutic gain. Finally, molecular targeting of the epidermal growth factor receptor (EGFR) has been investigated using F98 glioma cells, which had been transfected with the gene encoding EGFR and, intratumoral injection of boronated EGF as the delivery agent, followed by BNCT. These studies demonstrated that there was specific targeting of EGFR and provided proof of principle for the use of high molecular weight, receptor targeting-boron delivery agents. Finally, a xenograft model for melanoma metastatic to the brain has been developed using a human melanoma (MRA27), stereotactically implanted into the brains of nude rats, and these studies demonstrated that BNCT either cured or significantly prolonged the survival of tumor-bearing rats. It remains to be determined, which, if any, of these experimental approaches will be translated int...
Development of any therapeutic modality can be facilitated by the use of the appropriate animal models to assess its efficacy. This report primarily will focus on our studies using the F98 and 9L rat glioma models to evaluate the effectiveness of boron neutron capture therapy (BNCT) of brain tumors. Following intracerebral implantation the biological behavior of each tumor resembles that of human high grade gliomas in a number of ways. In both models, glioma cells were implanted intracerebrally into syngeneic Fischer rats and approximately 10-14 days later BNCT was initiated at the Brookhaven National Laboratory Medical Research Reactor. Two low molecular weight (M(r) < 210Da) 10B-containing drugs, boronophenylalanine (BPA) and/or sodium borocaptate (BSH) were used as capture agents, either alone or in combination with each other. The 9L gliosarcoma, which has been difficult to cure by means of either chemo- or radiotherapy alone, was readily curable by BNCT. The best survival data were obtained using BPA at a dose of 1200 mg/kg (64.8mg 10B), administered intraperitoneally (i.p.), with a 100% survival rate at 8 months. In contrast, the F98 glioma has been refractory to all therapeutic modalities. Tumor bearing animals, which had received 500 mg/kg (27 mg 10B) of BPA, or an equivalent amount of BSH i.v., had mean survival time (MST) of 37 and 33 days, respectively, compared to 29 days for irradiated controls. The best survival data with the F98 glioma model were obtained using BPA + BSH in combination, administered intra-arterially via the internal carotid artery (i.c.) with hyperosmotic mannitol induced blood-brain barrier disruption (BBB-D). The MST was 140 days with a cure rate of 25%, compared to a MST of 73 days with a 5% cure rate without BBB-D, and 41 days following i.v. administration of both drugs. A modest but significant increase in MST also was observed in rats that received intracarotid (i.c.) BPA in combination with Cereport (RMP-7), which produced a pharmacologically mediated opening of the BBB. Studies also have been carried out with the F98 glioma to determine whether an X-ray boost could enhance the efficacy of BNCT, and it was shown that there was a significant therapeutic gain. Finally, molecular targeting of the epidermal growth factor receptor (EGFR) has been investigated using F98 glioma cells, which had been transfected with the gene encoding EGFR and, intratumoral injection of boronated EGF as the delivery agent, followed by BNCT. These studies demonstrated that there was specific targeting of EGFR and provided proof of principle for the use of high molecular weight, receptor targeting-boron delivery agents. Finally, a xenograft model for melanoma metastatic to the brain has been developed using a human melanoma (MRA27), stereotactically implanted into the brains of nude rats, and these studies demonstrated that BNCT either cured or significantly prolonged the survival of tumor-bearing rats. It remains to be determined, which, if any, of these experimental approaches will be translated int...
These data suggest that the combination of MRT+GMIMPR might be better than MRT only for unifocal CNS tumors, particularly in infants and young children.
Cancer vaccines are one approach for the treatment of brain tumors. Most experimental studies are performed on so-called "immunogenic" brain tumor models such as the rat 9L glioma which does not reflect characteristics of human glioblastoma. In the present study, we tested syngeneic cellular vaccinations alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) on the weakly immunogenic F98 glioma model. Previous studies have shown the efficacy of this treatment on the 9L glioma model. Fisher rats received an intracerebral implantation of F98 cells. Three days later, two subcutaneous vaccinations with irradiated F98 cells were realized in presence or absence of GM-CSF. This scheme of vaccination induced a systemic cellular and humoral immune response capable of in vitro cytolytic activity against F98 cells. However, no significant differences in survival times were noted between vaccinated and untreated animals. Animals vaccinated with GM-CSF or without GM-CSF had respectively a survival time of 26 +/- 2.1 and 25 +/- 4.4 days following tumor challenge versus 26.5 +/- 2.4 days for untreated rats. Fourteen days after the intracerebral tumor implantation, the tumors of vaccinated animals showed a robust infiltration by T lymphocytes, NK cells, dendritic cells, granulocytes and CD11b/c+ myeloid cells. This infiltration was nearly absent in untreated animals except for CD11b/c+ myeloid cells. This study shows that, contrary to the 9L glioma model, the F98 glioma model is resistant to syngeneic cellular vaccinations although a strong peripheral and intratumoral immune response can be induced. These results suggest that the F98 glioma is an attractive model to understand the mechanisms of glioma immunotherapy resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.