Solid UO dissolution and uranium speciation in aqueous solutions that promote formation of uranyl peroxide macroanions was examined, with a focus on the role of alkali metals. UO powders were dissolved in solutions containing XOH (X = Li, Na, K) and 30% HO. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements of solutions revealed linear trends of uranium versus alkali concentration in solutions resulting from oxidative dissolution of UO, with X:U molar ratios of 1.0, showing that alkali availability determines the U concentrations in solution. The maximum U concentration in solution was 4.20 × 10 parts per million (ppm), which is comparable to concentrations attained by dissolving UO in boiling nitric acid, and was achieved by lithium hydroxide promoted dissolution. Raman spectroscopy and electrospray ionization mass spectrometry (ESI-MS) of solutions indicate that dissolution is accompanied by the formation of various uranyl peroxide cluster species, the identity of which is alkali concentration dependent, revealing remarkably complex speciation at high concentrations of base.