In this study, we developed an electrochemical sensor for ochratoxin A (OTA) by using an aptamer having a dithiol-based anchor, which exhibited higher stability on a gold electrode than a monothiol-based aptamer because of its two anchors. The sensor was also based on a signal-on scheme that produces a signal current resulting from structure-switching of the aptamer upon interaction with OTA. For simple fabrication of this sensor, the non-covalent interaction of methylene blue with the aptamer was also employed as an electrochemical indicator. In this study, the performance of the sensor, including the dissociation constant of the aptamer-OTA complex, was characterized. The proposed sensor exhibited high reproducibility and enough sensitivity to detect the minimum amount of OTA required for the analysis of real food samples with a limit of detection of 113 pM.