The division of labor between template and catalyst is a fundamental property of
all living systems: DNA stores genetic information whereas proteins function as
catalysts. The RNA world hypothesis, however, posits that, at the earlier stages
of evolution, RNA acted as both template and catalyst. Why would such division
of labor evolve in the RNA world? We investigated the evolution of DNA-like
molecules, i.e. molecules that can function only as template, in minimal
computational models of RNA replicator systems. In the models, RNA can function
as both template-directed polymerase and template, whereas DNA can function only
as template. Two classes of models were explored. In the surface models,
replicators are attached to surfaces with finite diffusion. In the compartment
models, replicators are compartmentalized by vesicle-like boundaries. Both
models displayed the evolution of DNA and the ensuing division of labor between
templates and catalysts. In the surface model, DNA provides the advantage of
greater resistance against parasitic templates. However, this advantage is at
least partially offset by the disadvantage of slower multiplication due to the
increased complexity of the replication cycle. In the compartment model, DNA can
significantly delay the intra-compartment evolution of RNA towards catalytic
deterioration. These results are explained in terms of the trade-off between
template and catalyst that is inherent in RNA-only replication cycles: DNA
releases RNA from this trade-off by making it unnecessary for RNA to serve as
template and so rendering the system more resistant against evolving parasitism.
Our analysis of these simple models suggests that the lack of catalytic activity
in DNA by itself can generate a sufficient selective advantage for RNA
replicator systems to produce DNA. Given the widespread notion that DNA evolved
owing to its superior chemical properties as a template, this study offers a
novel insight into the evolutionary origin of DNA.