Circular economy policies and recycling play a pivotal role in fostering sustainable models for the wood industry capable of reducing the environmental impact of our consumption patterns. The production of Particleboard is a good example of industry that uses high quantities of recycled wood. However, it poses risks since wood often have contaminants that compromise compliance of safety standards. Thus, it is necessary to develop methodologies for rapid analysis of chemical contaminants in wood wastes that allow easy detection of these elements.In this work, the capability of Laser-induced breakdown spectroscopy (LIBS) to detect a set of heavy metals in wood samples was explored. Some advantages of this technique, such as portability, minimal to no sample preparation, and quick analysis are characteristics that make this method one of the most suitable for this purpose of analysis.In the majority of cases, the contamination comes from the pigments used in paints, varnishes, or coatings. Titanium (Ti) e.g. is a common element in white pigments and Chromium (Cr) in red and green pigments. To ensure the presence or absence of Cr and Ti, a set of 3 lines was analysed. The results revealed the presence of these elements and that 30% of the samples seem to be highly contaminated. The LIBS technique proved to be a powerful methodogy for decision-making purposes.