Background: Due to constitutive or acquired non-sensitive to cytotoxic agents, the prognosis of osteosarcoma remains unfavorable. Itâs has been proved that metformin could enhance the chemosensitivity of cancer cells to anticancer drugs. A novel finding states that IGF-1R involves in cancer chemoresistance, However, whether IGF-1R play a role in metformin-induced osteosarcoma chemosensitivity is incompletely understood. Hence, the current study aimed to elucidate the role of metformin in OS cell chemosensitivity modulation to identify the underlying mechanism of metformin regulating the IGF-1R/miR-610/FEN1 signaling.Methods: Immunohistochemistry and qRT-PCR were used to evaluate the expression pattern of IGF-1R, miR-610 and FEN1 in osteosarcoma and paired normal tissues. Western blot and qRT-PCR were performed to determine changes in expression of key molecules in the IGF-1R/miR-610/FEN1 signaling pathway after various treatments. The direct modulation between miR-610 and FEN1 was monitored by luciferase reporter assay. Osteosarcoma cell sensitivity to chemotherapy was detected by MTS assay. In vivo experiments were conducted to further verify the role of the metformin in the chemosensitivity modulation of OS cells to ADM.Results: We found that IGF-1R, miR-610 and FEN1 were abberently expressed in osteosarcoma, and participated in apoptosis modulation (p < 0.05). We found that this effect was abated by metformin treatment. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-610. Moreover, we observed that metformin treatment decreased IGF-1R and FEN1, but elevated miR-610 expression. Metformin sensitized OS cells to cytotoxic agents, while overexpression of FEN1 compromised the sensitizing effects of metformin partly. Furthermore, metformin was observed to enforce the ADM treatment effect in nude mice xenograft models.Conclusions: Overall, metformin enhanced the sensitivity of OS cells to cytotoxic agents via the IGF-1R/miR-610/FEN1 signaling axis, highlighting the capacity of metformin as an adjunct to the chemotherapy of OS.