For the first time, a novel type of chameleon DNA-templated silver nanocluster (AgNC) is found whose fluorescence color can be switched among yellow, orange, and red by the regulation of complementary DNA, nonfluorescent assistant AgNC as well as Mg 2+ . AgNC templated by A 20 -C55 (A 20 -C55-NC) possesses strong yellow fluorescence (Y signal) in phosphate buffer solution. When approaching to the nonfluorescent assistant AgNC through template hybridization, Y signal decreases while a new red emission (R signal) rises, leading to a dramatic color change of AgNC solution from yellow to red. On the other hand, hybridization of A 20 -C55-NC with complementary DNA (T 20 ) largely enhances the Y signal while A 20 -C55-NC shows R and Y signal with equal intensity simultaneously in the presence of Mg 2+ . Therefore, the chameleon AgNC achieves controllable multicolor fluorescence variation. Based on above mechanism, a series of ratiometric analysis platforms are constructed for DNA target detection. Surprisingly, the ratiometric probes demonstrate an exponential growth of signal response with nanomolar sensitivity whether in double-stranded or hairpin-shaped structure. Accordingly, this universal ratiometric analysis platform possesses low background, large signal variation in a narrow concentration range, which presents obvious advantages over most of previous DNA detection strategies that are based on DNA-templated AgNC.