We analyze the band structure and interband optical transitions in a dangling backbone ladder DNA model. Using this model, semiconducting synthetic poly͑G͒-poly͑C͒ DNA is studied by means of a tight-binding model traditionally used for transport studies. Numerical calculations for optical absorption spectra are also presented. By studying the eigenstates' symmetries in uniform and nonuniform DNA chains, we conclude that, in both cases, the transitions are almost vertical in K space. The optical gap turns out larger than the electronic one, and an indirect band gap electronic structure for this DNA model is revealed. The effects of the environment, which are relevant for the wet form of DNA, are taken into account by introducing disorder in the backbone levels. We demonstrate that they affect more the spectra in the case of parallel polarization of the incoming light ͑with respect to the molecule axis͒. In such a case, the closure of the gap appears for a large enough disorder. We also consider the natural helix DNA conformation and find unusual selection rules for interband optical transitions. We propose that a comparison between the obtained spectra and the experiments can provide an insight into the electronic band structure of DNA.