Background The methylation of SHOX2 and RASSF1A shows promise as a potential biomarker for the early screening of lung cancer, offering a solution to remedy the limitations of morphological diagnosis. The aim of this study is to diagnose lung adenocarcinoma by measuring the methylation levels of SHOX2 and RASSF1A, and provide an accurate pathological diagnosis to predict the invasiveness of lung cancer prior to surgery.Material and methods The methylation levels of SHOX2 and RASSF1A were quantified using a LungMe® test kit through methylation-specific PCR (MS-PCR). The diagnostic efficacy of SHOX2 and RASSF1A and the cutoff values were validated using ROC curve analysis. The hazardous factors influencing the invasiveness of lung adenocarcinoma were calculated using multiple regression.Results: The cutoff values of SHOX2 and RASSF1A were 8.3 and 12.0, respectively. The sensitivities of LungMe® in IA, MIA and AIS patients were 71.3% (122/171), 41.7% (15/36), and 16.1% (5/31) under the specificity of 94.1% (32/34) for benign lesions. Additionally, the methylation level of SHOX2, RASSF1A and LungMe® correlated with the high invasiveness of clinicopathological features, such as age, gender, tumor size, TNM stage, pathological type, pleural invasion and STAS. The tumor size, age, CTR values and LungMe® methylation levels were identified as independent hazardous factors influencing the invasiveness of lung adenocarcinoma.Conclusion: SHOX2 and RASSF1A combined methylation can be used as an early detection indicator of lung adenocarcinoma. SHOX2 and RASSF1A combined (LungMe®) methylation is significantly correlated to age, gender, tumor size, TNM stage, pathological type, pleural invasion and STAS. The SHOX2 and RASSF1A methylation levels, tumor size and CTR values could predict the invasiveness of the tumor prior to surgery, thereby providing guidance for the surgical procedure.