Medical applications became a boon to the healthcare industry. It needs correct and fast segmentation associated with medical images for correct diagnosis. This assures high quality segmentation of medical images victimization. The Level Set Method (LSM) is a capable technique, however the quick process using correct segments remains difficult. The region based models like Active Contours, Globally Optimal Geodesic Active Contours (GOGAC) performs inadequately for intensity irregularity images. During this cardstock, we have a new tendency to propose an improved region based level set model motivated by the geodesic active contour models as well as the Mumford-Shah model. So that you can eliminate the re-initialization process of ancient level set model and removes the will need of computationally high priced re-initialization. Compared using ancient models, our model are sturdier against images using weak edge and intensity irregularity.