At the heart of the mismatch repair (MMR) system are proteins that recognize mismatches in DNA. Such mismatches can be mispairs involving normal or damaged bases or insertion/deletion loops due to strand misalignment. When such mispairs are generated during replication or recombination, MMR will direct removal of an incorrectly paired base or block recombination between nonidentical sequences. However, when mispairs are recognized outside the context of replication, proper strand discrimination between old and new DNA is lost, and MMR can act randomly and mutagenically on mispaired DNA. Such non-canonical actions of MMR are important in somatic hypermutation and class switch recombination, expansion of triplet repeats, and potentially in mutations arising in nondividing cells. MMR involvement in damage recognition and signaling is complex, with the end result likely dependent on the amount of DNA damage in a cell.