Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in
B. subtilis
the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.