Die vorliegende Arbeit Zeitaufgelöste NMR-spektroskopische Untersuchung konformationeller Dynamiken in DNA G-Quadruplexen befasst sich mit der detaillierten biophysikalischen Untersuchung wichtiger strukturdynamischer Eigenschaften von nicht-kanonischen Nukleinsäure Sekundärstrukturelementen. Im Genom aller eukaryotischer Lebewesen, insbesondere dem menschlichen Genom finden sich DNA-Sequenzabschnitte, die überdurchschnittlich Guanosin (G)-reich sind. Diese poly-G Abschnitte sind nicht zufällig im Genom verteilt, sondern häufen sich vermehrt in Genabschnitten, die besonders wichtig für die Regulation der Genexpression sind. G-reiche DNA-Sequenzen können unter geeigneten Umständen alternative Sekundärstrukturen ausbilden, die von der doppelsträngigen, kanonischen Watson-Crick Konformation abweichen. In Anwesenheit monovalenter Kationen können sich G-Nukleotide in einer Tetrade über Hoogsteen Interaktionen anlagern. Diese Tetraden können sich stapeln und dadurch sogenannte G-Quadruplexe (G4) ausbilden. Das menschliche cMYC Gen wird typischerweise als proto-Onkogen bezeichnet. Es kodiert für einen unspezifischen Transkriptionsfaktor, der bei einer Vielzahl von systematischen und soliden Tumorerkrankungen stark überexprimiert wird. Die zelluläre Konzentration des Genprodukts kann zu 90% über ein G4 cis-Element in der Promotorregion reguliert werden. Der cMYC G4 hat die Möglichkeit verschiedene Konformationen einzunehmen. Im Falle des cMYC G4 kann man zusätzliche, nicht-konventionelle Formen der konformationellen Isomerie finden. Zum einen gibt es die Möglichkeit, dass bei einem G4, der aus drei Tetraden und vier intramolekularen Strangabschnitten (dreistöckiger G4) besteht, einzelne Strangabschnitte mehr als drei konsekutive G-Nukleotide besitzen. Dadurch können sich Faltungs-Isomere bilden, die sich durch Verschieben des Strangs relativ zum verbleibenden dreistöckigen Tetradengerüst ergeben. Man spricht von G-Register Isomeren. Eine zweite Möglichkeit der Strukturisomerie ergibt sich, wenn in einer Nukleotidsequenz mehr als vier G-reiche Strangabschnitte aufeinander folgen. Jeweils vier dieser Strangabschnitte können in unterschiedlicher Weise kombiniert werden, um ein G4 Isomer auszubilden. In jedem dieser so zustande gekommenen G4 verbleibt ein (oder mehrere) G-reicher Strangabschnitt, der im konkreten Isomer nicht zur Faltung verwendet wird. Diese zusätzlichen G-Stränge werden daher auch Ersatzräder (engl. spare-tires) genannt; man erhält spare-tire Isomere. Obwohl diese Formen des Polymorphismus, deren biologischer Kontext und die biophysikalischen Konsequenzen in Arbeiten von C. Burrows (2015) und A. Mittermaier (2016) erstmals umfassend beschrieben wurden, gab es bis zum Ausgangspunkt dieser Arbeit keine Kenntnisse über deren strukturelle Dynamik, den Faltungswegen und den zugrundeliegenden molekularen Mechanismen. Zeitaufgelöste Kernspinresonanz (engl. nuclear magnetic resonance, NMR) Spektroskopie ist eine bestens geeignete Methode, um die Dynamik von Biomakromolekülen mit atomarer Auflösung zu studieren. Um solche Experimente durchführen zu können, braucht es geeignete Herangehensweisen für die Präparation eines Nicht-Gleichgewichtszustands. In dieser Arbeit wird eine neu erarbeitete Strategie vorgestellt, die es erlaubt, Einblick in die Faltungs- und Umfaltungskinetiken eines dynamischen Konformations-Ensembles nicht-konventioneller Strukturisomere der cMYC G4 DNA-Sequenz zu erhalten. Hierzu wurden photolabile Schutzgruppen (engl. Photocages) positionsspezifisch an bestimmten G-Nukleobasen (O6-(R)-NPE) angebracht. Die Schutzgruppen blockieren die Basenpaar-Interaktionen des Nukleotids, wodurch dieses sich nicht mehr an einer Tetradenbildung beteiligen kann. Die Photocages wurden jeweils an den Nukleotiden eingeführt, die nur in jeweils einem der G-Register Isomere an der Tetradenbildung beteiligt sind. Durch diese gezielte Destabilisierung konnten die Isomere getrennt und im gefalteten Zustand isoliert werden. Die so erhaltenen Konformationen wurden umfassend spektroskopisch charakterisiert. Der Ansatz, das konformationelle Gleichgewicht durch Photocages transient zu stören, wurde daraufhin weiterentwickelt. Mehrere Photocages wurden an Nukleobasen in zentraler Position einzelner G-Strangabschnitte angebracht. Dadurch konnte eine ausreichende Destabilisierung erreicht werden, die die Faltung jedweder G4 Strukturen unterbindet. Somit wurde ein ungefalteter Zustand erzeugt, der unter ansonsten frei wählbaren, physiologischen Bedingungen besteht. Durch in situ Photolyse der Schutzgruppen konnte so die Licht-induzierte G4 Faltung unter konstanten Puffer- und Temperaturbedingungen untersucht werden. Dieser Ansatz wurde auf die Untersuchung der Faltungswege, die zu verschiedenen spare-tire Isomeren führen, fokussiert. Zusammenfassend kann festgestellt werden, dass es insgesamt erstmalig gelungen ist, die Kinetiken der wesentlichen Faltungs- und Umfaltungswege entlang der konformationellen Energielandschaft des cMYC G4 Elements zu untersuchen. Das komplexe, dynamische Zusammenspiel aller relevanten, nicht-konventionellen isomeren G4 Strukturen konnte entworren und umfassend experimentell beschrieben werden. Der dafür weiterentwickelte Ansatz über konformationelle Selektion mit Hilfe photolabiler Schutzgruppen hat dabei experimentelle Einblicke erlaubt, die bislang nicht zugänglich waren. Die Strukturen und Faltungszustämde, die mit den chemisch modifizierten Oligonukleotiden erhalten und isoliert wurden, sind umfassend spektroskopisch untersucht worden. Die Anwendung verschiedener spektroskopischer Ansätze und deren Kombination mit weiteren biophysikalischen Methoden hat eine Methoden-unabhängige Validierung der erhaltenen kinetischen und thermodynamischen Daten ermöglicht.