Cryo-correlative light and electron microscopy (cryoCLEM) is a powerful strategy to high resolution imaging in the unperturbed hydrated state, in particular for in combination with cryo-electron tomography (cryoET). In this approach fluorescence microscopy aids localizing the area of interest, and cryogenic focused ion beam/scanning electron microscopy (cryoFIB/SEM) allows preparation of thin cryo-lamellae for cryoET. However, the current method cannot be accurately applied on bulky (3D) samples such as tissues and organoids.
3D cryo-correlative imaging of large volumes is needed to close the resolution gap between cryo-light microscopy and cryoET, placing sub-nanometer observations in a larger biological context. Currently technological hurdles render 3D cryoCLEM an unexplored approach.
Here we demonstrate a cryoCLEM workflow for tissues, correlating 3D cryo-Airyscan confocal microscopy with 3D cryoFIB/SEM volume imaging. Accurate correlation is achieved by imprinting a FinderTOP pattern in the sample surface during high pressure freezing, and allows precise targeting for cryoFIB/SEM volume imaging and cryo-lift out for cryoTEM.