Cytotoxic T lymphocyte dysfunction is frequently associated with PD-L1/PD-1 pathway activation, and is a principal obstacle in cancer therapy. In the present study, the mechanisms underlying the human papillomavirus (HPV)-induced evasion of cervical cancer cells to the host immune system via the programmed death ligand 1/programmed death 1 (PD-L1/PD-1) signaling pathway was investigated. A significant increase in the expression of the HPV16E7 viral protein and PD-L1 in cervical tissues was observed when compared with normal cervical tissues. In addition, a positive correlation between HPV16E7 and PD-L1 expression was observed by immunohistochemical staining and reverse transcription-polymerase chain reaction. Overexpressing HPV16E7 oncoprotein in the epithelial carcinoma of PC3 cells increased the expression level of the PD-L1 protein and inhibited peripheral blood mononuclear cell (PBMC) proliferation and cytotoxic T lymphocyte (CTL) activity. Upon knockdown of HPV16E7 in HPV16-associated CaSki cervical cancer cells with a relevant siRNA, a reduction in PD-L1 protein expression was observed, as well as a significant increase in PBMC proliferation and CTL activity. A recombinant plasmid, MSCVPIG-soluble PD-1, was constructed and transfected into the CaSki cell line, and was co-cultured with PBMCs. PBMC proliferation and CTL activity were observed to increase significantly. In conclusion, the results presented in the current study suggest that overexpression of PD-L1, induced by HPV16E7, may be responsible for lymphocyte dysfunction. In addition, soluble PD-1 may restore the function of tumor-infiltrating lymphocytes by inhibiting the PD-L1/PD-1 signaling pathway. These results may provide a novel insight for immunotherapeutic approaches in the treatment of cervical cancer.