Small‐molecule regulation is a powerful switching tool to manipulate cell signal transduction for a desired function; however, most available methods usually require genetic engineering to endow cells with responsiveness to user‐defined small molecules. Herein, we demonstrate a nongenetic approach for small‐molecule‐controlled receptor activation and consequent cell behavior manipulation that is based on DNA‐mediated chemically induced dimerization (D‐CID). D‐CID uses a programmable chemical‐responsive DNA nanodevice to trigger DNA strand displacement and induce the activation of c‐Met, a tyrosine kinase receptor cognate for hepatocyte growth factor, through dimerization. Through the use of various functional nucleic acids, including aptamers and DNAzymes, as recognition modules, the versatility of D‐CID in inducing c‐Met signaling upon addition of various small‐molecular or ionic cues, including ATP, histidine, and Zn2+, is demonstrated. Moreover, owing its multi‐input properties, D‐CID can be used to manipulate the behaviors of multiple cell populations simultaneously in a selective and programmable fashion.