Automatic driving technology refers to equipment such as vehicle-mounted sensors and computers that are used to navigate and control vehicles autonomously by acquiring external environmental information. To achieve automatic driving, vehicles must be able to perceive the surrounding environment and recognize and understand traffic signs, traffic signals, pedestrians, and other traffic participants, as well as accurately plan and control their path. Recognition of traffic signs and signals is an essential part of automatic driving technology, and gesture recognition is a crucial aspect of traffic-signal recognition. This article introduces mm-TPG, a traffic-police gesture recognition system based on a millimeter-wave point cloud. The system uses a 60 GHz frequency-modulated continuous-wave (FMCW) millimeter-wave radar as a sensor to achieve high-precision recognition of traffic-police gestures. Initially, a double-threshold filtering algorithm is used to denoise the millimeter-wave raw data, followed by multi-frame synthesis processing of the generated point cloud data and feature extraction using a ResNet18 network. Finally, gated recurrent units are used for classification to enable the recognition of different traffic-police gestures. Experimental results demonstrate that the mm-TPG system has high accuracy and robustness and can effectively recognize traffic-police gestures in complex environments such as varying lighting and weather conditions, providing strong support for traffic safety.