PremiseThe interaction between ecological and evolutionary processes has been recognized as an important factor shaping the evolutionary history of species. Some authors have proposed different ecological and evolutionary hypotheses concerning the relationships between plants and their pollinators, and a special case is the interaction and suspected coevolution among Agave species and their main pollinators, the Leptonycteris bats. Agave species have in general a pollination syndrome compatible with chiropterophily, including floral shape and size, nocturnal nectar production, and nectar quality and sugar concentration. Our goal was to analyze the interaction Agave‐Leptonycteris and its dynamics during three different climate scenarios.MethodsWe modeled the Agave‐Leptonycteris interaction in its spatial and temporal components during Pleistocene, we used Ecological Niche Models (ENMs) and three climate scenarios: Current, Last Glacial Maximum (LGM), and Last InterGlacial (LIG). Further, we analyzed the geographic correlation between 96 Agave species and two the Mexicans Tequila bats, genus Leptonycteris.ResultsWe found that Leptonycteris species interact with different Agave species over their migratory routes. We propose an interaction refuge in Metztitlán and Tehuacán‐Cuicatlán areas, where Agave‐ Leptonycteris interaction has probably remained active. During the non‐migratory season, both bat species consume nectar of almost the same Agave species, suggesting the possibility of a diffuse coevolution among Agave and Leptonycteris bats.ConclusionsWe propose that in the areas related to migratory bat movements, each bat species interacts with different Agave species, whereas in the areas occupied by non‐migrant individuals, both bat species consume nectar of almost the same Agave taxa.This article is protected by copyright. All rights reserved.