Although famous for photic courtship displays, fireflies (Coleoptera: Lampyridae) are also notable for emitting strong odors when molested. The identity of volatile emissions and their possible role, along with photic signals, as aposematic warnings of unpalatability have been little explored, especially in tropical species. Pursuant to the observation that the widespread Neotropical fireflies, Photuris trivittata and Bicellonycha amoena, emit pungent odors, glows, and flashes when handled, we investigated their cuticular and headspace chemistry. Gas chromatography-mass spectrometry analyses revealed that both fireflies have species-specific cuticular hydrocarbon profiles. Photuris trivittata headspace was dominated by 2-methoxy-3-(1-methylpropyl) pyrazine (hereafter, pyrazine), on the order of 1.59 ng/individual and a suite of sesquiterpenes, while B. amoena emitted 3-methoxy-2-butenoic acid methyl ester and a few ketones. This is the first report of such compounds in fireflies. We investigated the role of pyrazine in P. trivittata's interactions with potential predators: sympatric ants, toads, and bats. Solvent-washed P. trivittata painted with pyrazine incurred lower ant predation than did their solvent-washed counterparts. Pyrazine significantly repelled ants at baits in concentrations as low as 9.8 9 10 À4 ng/ll. The toad, Rhinella marina, readily accepted intact fireflies, pyrazine-coated and uncoated mealworms. Both Myotis nigricans and Molossus molossus bats rejected fireflies, but accepted both pyrazine-coated and uncoated mealworms. While pyrazine repels ants, its role as an aposematic signal warning other potential predators of firefly distastefulness requires further investigation. Our results underscore the idea that multiple enemies exert conflicting selection on firefly defenses. Abstract in Spanish is available with online material.