The default mode network (DMN) is a collection of cortical brain regions that is active during states of rest or quiet wakefulness in humans and other mammalian species. A pertinent characteristic of the DMN is a suppression of local field potential gamma activity during cognitive task performance as well as during engagement with external sensory stimuli. Conversely, gamma activity is elevated in the DMN during rest. Here, we document that the rat basal forebrain (BF) exhibits the same pattern of responses, namely pronounced gamma oscillations during quiet wakefulness in the home cage and suppression of this activity during active exploration of an unfamiliar environment. We show that gamma oscillations are localized to the BF and that gamma-band activity in the BF has a directional influence on a hub of the rat DMN, the anterior cingulate cortex, during DMNdominated brain states. The BF is well known as an ascending, activating, neuromodulatory system involved in wake-sleep regulation, memory formation, and regulation of sensory information processing. Our findings suggest a hitherto undocumented role of the BF as a subcortical node of the DMN, which we speculate may be important for switching between internally and externally directed brain states. We discuss potential BF projection circuits that could underlie its role in DMN regulation and highlight that certain BF nuclei may provide potential target regions for up-or down-regulation of DMN activity that might prove useful for treatment of DMN dysfunction in conditions such as epilepsy or major depressive disorder.gamma suppression | anterior cingulate cortex | granger causality A highly consistent finding across a wide range of functional imaging studies in humans is that a network of brain regions, referred to as the "default mode network" (DMN), increases its activity during passive mental states compared with the performance of cognitive tasks. This was initially shown in a metaanalysis of several PET studies (1), in which a distribution of brain regions broadly including the medial prefrontal, retrosplenial, and anterior cingulate cortex (ACC), as well as lateral parietal and temporal cortices, was shown to be activated when subjects were in a state of quiet restfulness. The DMN areas are thought to form a cohesive set of intrinsically coupled brain regions, such that fMRI activations in its component regions exhibit similar time courses, allowing them to be identified reliably using seed-region analysis (2-4). Activity in the DMN exhibits anticorrelation with a complementary, largely nonoverlapping, set of fronto-parietal brain areas known as the "dorsal attention network" (DAN) (5). It should be noted, however, that particular brain structures may harbor functionally heterogeneous elements and thus may contribute to multiple functions, as was shown for the ACC (6). During wakefulness, the human brain thus alternates between DAN-and DMN-dominated activation states, corresponding to effortful cognitive task performance on the one hand and quiet restful...