Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In human speakers’ daily conversations, what we do not say matters. We not only compute the literal semantics but also go beyond and draw inferences from what we could have said but chose not to. How well is this pragmatic reasoning process represented in pre-trained large language models (LLM)? In this study, we attempt to address this question through the lens of manner implicature, a pragmatic inference triggered by a violation of the Grice manner maxim. Manner implicature is a central member of the class of context-sensitive phenomena. The current work investigates to what extent pre-trained LLMs are able to identify and tease apart different shades of meaning in manner implicature. We constructed three metrics to explain LLMs’ behavior, including LLMs-surprisals, embedding vectors’ similarities, and natural language prompting. Results showed no striking evidence that LLMs have explainable representations of meaning. First, the LLMs-surprisal findings suggest that some LLMs showed above chance accuracy in capturing different dimensions of meaning, and they were able to differentiate neutral relations from entailment or implications, but they did not show consistent and robust sensitivities to more nuanced comparisons, such as entailment versus implications and equivalence versus entailment. Second, the similarity findings suggest that the perceived advantage of contextual over static embeddings was minimal, and contextual LLMs did not notably outperform static GloVe embeddings. LLMs and GloVe showed no significant difference, though distinctions between entailment and implication were slightly more observable in LLMs. Third, the prompting findings suggest no further supportive evidence indicating LLM’s competence in fully representing different shades of meaning. Overall, our study suggests that current dominant pre-training paradigms do not seem to lead to significant competence in manner implicature within our models. Our investigation sheds light on the design of datasets and benchmark metrics driven by formal and distributional linguistic theories.
In human speakers’ daily conversations, what we do not say matters. We not only compute the literal semantics but also go beyond and draw inferences from what we could have said but chose not to. How well is this pragmatic reasoning process represented in pre-trained large language models (LLM)? In this study, we attempt to address this question through the lens of manner implicature, a pragmatic inference triggered by a violation of the Grice manner maxim. Manner implicature is a central member of the class of context-sensitive phenomena. The current work investigates to what extent pre-trained LLMs are able to identify and tease apart different shades of meaning in manner implicature. We constructed three metrics to explain LLMs’ behavior, including LLMs-surprisals, embedding vectors’ similarities, and natural language prompting. Results showed no striking evidence that LLMs have explainable representations of meaning. First, the LLMs-surprisal findings suggest that some LLMs showed above chance accuracy in capturing different dimensions of meaning, and they were able to differentiate neutral relations from entailment or implications, but they did not show consistent and robust sensitivities to more nuanced comparisons, such as entailment versus implications and equivalence versus entailment. Second, the similarity findings suggest that the perceived advantage of contextual over static embeddings was minimal, and contextual LLMs did not notably outperform static GloVe embeddings. LLMs and GloVe showed no significant difference, though distinctions between entailment and implication were slightly more observable in LLMs. Third, the prompting findings suggest no further supportive evidence indicating LLM’s competence in fully representing different shades of meaning. Overall, our study suggests that current dominant pre-training paradigms do not seem to lead to significant competence in manner implicature within our models. Our investigation sheds light on the design of datasets and benchmark metrics driven by formal and distributional linguistic theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.