Background
Cannabis laboratory testing reliability is a scientific and policy challenge in US states with legal cannabis. Greater reported THC concentration yields higher prices, and media reports describe a well-known consumer and dispensary preference for flower products containing a minimum 20% THC content—an economically meaningful but biologically arbitrary threshold. This paper examines the frequency distribution of reported THC concentration in legal cannabis flower products in Nevada and Washington state for unusual shifts around the 20% threshold suggestive of potential manipulation of reported THC results.
Methods
THC concentration test results for 142,000 Chemotype 1 flower products from Washington state between June 2014 and May 2017 and 55,000 flower products from Nevada between December 2017 and January 2020 were analyzed for changes in the frequency distribution around the 20% threshold using the McCrary density test. Analyses were performed among all labs in each state, the highest volume lab in Washington, and two labs in Washington which had their licenses suspended for testing irregularities during the study period.
Results
Comparing just above the 20% THC threshold with just below it, the frequency of test results increased by about 43% in Nevada (z = 15.6, p < 0.001) and by about 17% in Washington (z = 11.0, p < 0.001). In Washington’s highest volume testing lab, frequency increased by only about 1% (z = 0.39, p = 0.70), while it increased by about 47% (z = 12.7, p < 0.001) among the two suspended labs. Subset to those growers which sent products to both sets of labs, frequency of flower products just above the 20% threshold increased by 2% in Washington’s largest lab (z = 0.50, p = 0.62) and by 52% among the two suspended labs (z = 12.8, p < 0.001).
Discussion
There is a statistically unusual spike in the frequency of products reporting just higher than 20% THC in both states consistent with economic incentives for products to contain at least 20% THC. This “bunching” of reported THC levels exists among some, but not all, cannabis testing labs, suggesting that laboratory differences (rather than precise manipulation by growers) drive this potential manipulation in reported THC content. These findings elaborate on prior research highlighting unexplained interlaboratory variation in cannabis testing results and highlight ongoing irregularities with legal cannabis testing.
Conclusion
These findings highlight the need for industry oversight and cautions researchers working with reported cannabis THC concentration data, which may be biased by economic incentives to report higher THC.