Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fastmoving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines. energy development | sensory perception | video surveillance | wildlife | wind energy B ats are long-lived mammals with low reproductive potential and require high adult survivorship to maintain populations (1, 2). The recent phenomenon of widespread fatalities of bats at utility scale wind turbines represents a new hazard with the potential to detrimentally affect entire populations (3, 4). Bat fatalities have been found at wind turbines on several continents (3-6), with hypothesized estimates of fatalities in some regions ranging into the tens to hundreds of thousands of bats per year (4, 6). Before recent observations of dead bats beneath wind turbines, fatal collisions of bats with tall structures had been rarely recorded (7). Most fatalities reported from turbines in the United States, Canada, and Europe are of species that evolved to roost primarily in trees during much of the year ("tree bats"), some of which migrate long distances in spring and late summer to autumn (8). In North America, tree bats compose more than three-quarters of the reported bat fatalities found at wind-energy sites (6, 9), although there is a paucity of information from the southwestern United States and Mexico. Similar patterns occur in Europe (4). Another prominent pattern in bat fatality data from northern temperate zones is that most fatali...