The synthesis, structure and electronic properties of novel Group 6 Fischer alkoxy-bis(carbene) complexes are reported. The UV/Vis spectra of these species display two main absorptions at approximately 350 and 550 nm attributable to a ligand-field (LF) and metal-to-ligand charge-transfer (MLCT) transitions, respectively. The planarity of the system and the cooperative effect of both pentacarbonyl metal moieties greatly enhance the conjugation between the group at the end of the spacer and the metal carbene fragment provoking dramatic changes in the LF and MLCT absorptions. This is in contrast to related push-pull Fischer monocarbenes, where the position of the MLCT band remains mostly unaltered regardless the substituent attached to the donor fragment. In addition, the MLCT maxima can be tuned with subtle modifications of the electronic nature of the central aryl fragment in the novel A-π-D-π-A (A = acceptor, D = donor) systems. DFT and time-dependent (TD) DFT quantum chemical calculations at the B3LYP/def2-SVP level have also been performed to determine the minimum-energy molecular structure of this family of compounds and to analyse the nature of the vertical one-electron excitations associated to the observed UV/Vis absorptions as well as to rationalise their electrochemical behaviour. The ability of tuning up the electronic properties of the compounds studied herein may be of future use in material chemistry.