Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in early childhood. Despite recent advances in the treatment regimes of rhabdomyosarcoma, the 5-year survival is still alarmingly low for the more aggressive metastasizing alveolar rhabdomyosarcoma subtype. Novel treatment strategies are needed in order to increase the overall survival rate. Hallmarks of cancer include evade cell death induction and evade immune system surveillance. This is mediated in part by up-regulation of inhibitor of apoptosis (IAP) proteins. With the development of Smac mimetic compounds mimicking the endogenous IAP antagonist Smac, this tumor evasion mechanism became exploitable. In this PhD thesis, a combinatory approach for a putative treatment option of RMS will be presented. Here, the Smac mimetic compound BV6 will be used as a pre-treatment of RMS cells. This leads to a sensitizing effect within the tumor cells, increasing the killing efficacy of natural killer (NK) cells. Subtoxic concentrations of BV6 were chosen to sensitize RMS cells. To remodel the solid tumor characteristics of RMS, a multicellular RMS tumor spheroid culture model was used. In both tumor spheroids and conventional monolayer cell culture BV6 induced the degradation of IAP proteins (cIAP1, cIAP2, in spheroids XIAP). Further, BV6 led to the activation of both, the canonical and non-canonical NF-κB signaling pathways. This was demonstrated by an increased IκBα and p65 phosphorylation, and nuclear translocation of p-p65, indicative for an active canonical NF-κB signaling. On the other side, cIAP degradation led to the stabilization and accumulation of NIK and downstream partial degradation of p100 to p52 and its nuclear translocation, indicating non-canonical NF-κB signaling pathway activity. A bulk RNA sequencing approach of BV6 treated RH30 cells validated the NF-κB signaling involvement and identified 182 differentially expressed genes. Among the interesting target genes are NFKBIA (IκBα),BIRC3 (cIAP2), NFKB2 (p100), CCL5 and SSTR2. SSTR2 was thoroughly validated as being up-regulated on a transcriptional and on protein level. Here, SSTR2A, one of the two alternative splicing variants, is up-regulated and opens a hypothetical targeted treatment strategy, as SSTR2 expression is not associated with RMS, but rather described with neuroendocrine tumor entities. In addition, CCL5 was thoroughly validated as a BV6 induced target. Again, the up-regulated mRNA transcription was validated by an increased translation and by increased secretion of CCL5. As CCL5 being associated as pro-migratory and activating of NK cells, CRISPR/Cas9 mediated CCL5 knock-out studies were performed to evaluate the influence of CCL5 within a BV6 pre-treatment and NK cell co-cultivation setting. It was shown that CCL5 knock-out does not rescue BV6 pre-treated RMS spheroids from NK cell attack and killing. The previous mentioned transcriptional activity by BV6 stimulation was NIK mediated as knock-down of NIK reduced the mRNA transcription of several interesting genes. However, NIK mediated down-stream signaling had no influence on the BV6 induced sensitizing effect towards NK cell mediated attack. A NIK knock-down had no rescue effect upon BV6 pre-treatment and NK cell co-treatment. As cIAP proteins are present in receptor bound complexes, e.g. complex I at the TNF receptor 1 (TNFR1), a putative involvement of death receptors in general was evaluated. Indeed, BV6 treatment of RMS cells could increase the surface presentation of DR5, a death receptor ligating TRAIL. Functionally, co-treatment of BV6 with TRAIL led to an additive cell death inducting effect. However, within the NK cell co-cultivation setting, addition of a neutralizing TRAIL anitbody could not rescue BV6 pre-treated RMS spheroids from NK cell killing. A similar effect was observed when neutralizing TNFα by adding Enbrel during the NK cell co-cultivation. BV6 sensitization of RMS spheroids seems to be independent of death receptors. In addition to activating NF-κB, BV6 as a Smac mimetic is supposed to be able to release caspases bound by IAP proteins. Indeed, BV6 pre-treatment of RMS spheroids and co-cultivation with NK cells could cleave and thereby activate the executioner caspase-3. Further, treatment with a pan-caspase inhibitor, zVAD.fmk, could reduce the BV6 mediated sensitizing effect towards NK cell attack in RD spheroids. Taken together, BV6 does induce a thoroughly validated NF-κB signaling pathway, leading to a NIK mediated transcriptional signature change. However, the NF-κB activation might not be responsible for the observed sensitization. Further, BV6 in combination with NK cells led to a seemingly death receptor independent, caspase dependent cell death induction of RMS spheroids. Although the mechanism remains partially con-cealed, a therapeutic benefit by combining a cell death sensitizing compound, i.e. BV6, with cytotoxic lymphocytes is evident.