S. Docosapentaenoic acid monoacylglyceride reduces inflammation and vascular remodeling in experimental pulmonary hypertension. Am J Physiol Heart Circ Physiol 307: H574 -H586, 2014. First published June 14, 2014 doi:10.1152/ajpheart.00814.2013 Polyunsaturated fatty acids (n-3 PUFA) have been shown to reduce inflammation and proliferation of pulmonary artery smooth muscle cells under pathophysiological conditions. However, the anti-inflammatory effect of the newly synthesized docosapentaenoic acid monoacylglyceride (MAG-DPA) on key signaling pathways in pulmonary hypertension (PH) pathogenesis has yet to be assessed. The aim of the present study was to determine the effects of MAG-DPA on pulmonary inflammation and remodeling occurring in a rat model of PH, induced by a single injection of monocrotaline (MCT: 60 mg/kg). Our results demonstrate that MAG-DPA treatment for 3 wk following MCT injection resulted in a significant improvement of right ventricular hypertrophy (RVH) and a reduction in Fulton's Index (FI). Morphometric analyses revealed that the wall thickness of pulmonary arterioles was significantly lower in MCT ϩ MAG-DPA-treated rats compared with controls. This result was further correlated with a decrease in Ki-67 immunostaining. Following MAG-DPA treatments, lipid analysis showed a consistent increase in DPA together with lower levels of arachidonic acid (AA), as measured in blood and tissue samples. Furthermore, in MCT-treated rats, oral administration of MAG-DPA decreased NF-B and p38 MAPK activation, leading to a reduction in MMP-2, MMP-9, and VEGF expression levels in lung tissue homogenates. Altogether, these data provide new evidence regarding the mode of action of MAG-DPA in the prevention of pulmonary hypertension induced by MCT. docosapentaenoic acid; inflammation; pulmonary hypertension; nuclear factor-B; tumor necrosis factor-␣