the presence of calibration errors in some of the models. In particular, the amplitudes of some model predictions are too high when predictability is limited by the northern spring ENSO predictability barrier and/or when the interannual variability of the SST is near its seasonal minimum. The skill of the NMME system is compared to that of the MME from the IRI/CPC ENSO prediction plume, both for a comparable hindcast period and also for a set of real-time predictions spanning 2002-2011. Comparisons are made both between the MME predictions of each model group, and between the average of the skills of the respective individual models in each group. Acknowledging a hindcast versus real-time inconcsistency in the 2002-2012 skill comparison, the skill of the NMME is slightly higher than that of the prediction plume models in all cases. This result reflects well on the NMME system, with its large total ensemble size and opportunity for possible complementary contributions to skill.Abstract Hindcasts and real-time predictions of the eastcentral tropical Pacific sea surface temperature (SST) from the North American Multimodel Ensemble (NMME) system are verified for 1982-2015. Skill is examined using two deterministic verification measures: mean squared error skill score (MSESS) and anomaly correlation. Verification of eight individual models shows somewhat differing skills among them, with some models consistently producing more successful predictions than others. The skill levels of MME predictions are approximately the same as the two best performing individual models, and sometimes exceed both of them. A decomposition of the MSESS indicates This paper is a contribution to the special collection on the North American Multi-Model Ensemble (NMME) seasonal prediction experiment. The special collection focuses on documenting the use of the NMME system database for research ranging from predictability studies, to multi-model prediction evaluation and diagnostics, to emerging applications of climate predictability for subseasonal to seasonal predictions