The formation of long-term episodic memories requires the activation of molecular mechanisms in several regions of the medial temporal lobe, including the hippocampus and anterior cingulate cortex (ACC). The extent to which these regions engage distinct mechanisms and cell types to support memory formation is not well understood. Recent studies reported that oligodendrogenesis is essential for learning and long-term memory; however, whether these mechanisms are required only in selected brain regions is still unclear. Also still unknown are the temporal kinetics of engagement of learning-induced oligodendrogenesis and whether this oligodendrogenesis occurs in response to neuronal activity. Here we show that in rats and mice, episodic learning rapidly increases the oligodendrogenesis and myelin biogenesis transcripts olig2, myrf, mbp, and plp1, as well as oligodendrogenesis, in the ACC but not in the dorsal hippocampus (dHC). Region-specific knockdown and knockout of Myrf, a master regulator of oligodendrocyte maturation, revealed that oligodendrogenesis is required for memory formation in the ACC but not the dHC. Chemogenetic neuronal silencing in the ACC showed that neuronal activity is critical for learning-induced oligodendrogenesis. Hence, an activity-dependent increase in oligodendrogenesis in selected brain regions, specifically in the ACC but not dHC, is critical for the formation of episodic memories.