Objective -To discuss 3 potential mechanisms for loss of peripheral vasomotor tone during vasodilatory shock; review vasopressin physiology; review the available animal experimental and human clinical studies of vasopressin in vasodilatory shock and cardiopulmonary arrest; and make recommendations based on review of the data for the use of vasopressin in vasodilatory shock and cardiopulmonary arrest. Data Sources -Human clinical studies, veterinary experimental studies, forum proceedings, book chapters, and American Heart Association guidelines. Human and Veterinary Data Synthesis -Septic shock is the most common form of vasodilatory shock. The exogenous administration of vasopressin in animal models of fluid-resuscitated septic and hemorrhagic shock significantly increases mean arterial pressure and improves survival. The effect of vasopressin on return to spontaneous circulation, initial cardiac rhythm, and survival compared with epinephrine is mixed. Improved survival in human patients with ventricular fibrillation, pulseless ventricular tachycardia, and nonspecific cardiopulmonary arrest has been observed in 4 small studies of vasopressin versus epinephrine. Three large studies, though, did not find a significant difference between vasopressin and epinephrine in patients with cardiopulmonary arrest regardless of initial cardiac rhythm. No veterinary clinical trials have been performed using vasopressin in cardiopulmonary arrest. Conclusion -Vasopressin (0.01-0.04 U/min, IV) should be considered in small animal veterinary patients with vasodilatory shock that is unresponsive to fluid resuscitation and catecholamine (dobutamine, dopamine, and norepinephrine) administration. Vasopressin (0.2-0.8 U/kg, IV once) administration during cardiopulmonary resuscitation in small animal veterinary patients with pulseless electrical activity or ventricular asystole may be beneficial for myocardial and cerebral blood flow.