IntroductionPreliminary studies have showed that the Incremental Shuttle Walking Test (ISWT) is a maximal test, however comparison between ISWT with the cardiopulmonary exercise test (CEPT) has not yet performed in the healthy woman population. Furthermore, there is no regression equation available in the current literature to predict oxygen peak consumption (VO2 peak). Thus, this study aimed to compare the ISWT with CEPT and to develop an equation to predict peak oxygen uptake (VO2 peak) in healthy women participants.MethodsFirst, the VO2 peak, respiratory exchange ratio (R peak), heart rate max (HR max) and percentage of predicted HR max (% predicted HR max) were evaluated in the CEPT and ISWT (n = 40). Then, an equation was developed to predict the VO2 peak (n = 54) and its validation was performed (n = 20).ResultsThere were no significant differences between the ISWT and CEPT of VO2 peak, HR max and % predicted HR max values (P>0.05), except for R peak measure in the ISWT (1.22 ± 0.13) and CEPT (1.18 ± 0.1) (P = 0.022). Therefore, both tests showed a moderate positive correlation of VO2 peak (r = 0.51; P = 0.0007), HR max (r = 0.65; P<0.0001) and R peak (r = 0.55; P = 0.0002) and the Bland-Altman analysis showed agreement of VO2 peak (bias = -0.14). The distance walked on ISWT and age explained 36.3% (R2 Adjusted = 0.363) of the variance in VO2 peak. The equation developed was VO2 peak (predicted) = 19.793 + (0.02 x distance walked)—(0.236 x age). There was no statistically significant difference between the VO2 peak measured directly and the predicted, and the Bland-Altman analysis showed agreement (bias = 1.5 ml/kg/min).ConclusionISWT is a maximal test showing similar results compared to the CEPT, and the predicted equation was valid and applicable for VO2 peak assessing in young adult healthy women.