While there are many instances of single neurons that can drive rhythmic stimulus-elicited motor programs, such neurons have seldom been found to be necessary for motor program function. In the isolated central nervous system of the marine mollusc Tritonia diomedea, brief stimulation (1 sec) of a peripheral nerve activates an interneuronal central pattern generator that produces the longlasting (-30-60 sec) motor program underlying the animal's rhythmic escape swim. Here, we identify a single interneuron, DRI (for dorsal ramp interneuron), that (i) conveys the sensory information from this stimulus to the swim central pattern generator, (ii) elicits the swim motor program when driven with intracellular stimulation, and (iii) blocks the depolarizing "ramp" input to the central pattern generator, and consequently the motor program itself, when hyperpolarized during the nerve stimulus. Because most of the sensory information appears to be funneled through this one neuron as it enters the pattern generator, DRI presents a striking example of single neuron control over a complex motor circuit.Over 30 yr ago, Wiersma and Ikeda (1) introduced the term "command neuron" to describe single interneurons in the crayfish that could drive coordinated movements of the animal's swimmerets. In its most restricted form, a command neuron is currently defined as a single interneuron, situated between sensory neurons and the motor pattern-generating circuitry, whose activity is both necessary and sufficient for sensory activation of the motor program (2). Many cells have now been described that can drive stimulus-elicited motor programs (3-13), but only rarely have such neurons been shown to also be necessary for circuit operation. Instead, in most cases these neurons have been found to operate in parallel with other circuit elements that fill-in when the cell in question is removed from the network (7-13). These and other findings have given rise in recent years to the view that, in most systems, command properties are distributed across broad interneuronal networks, with single neurons having only minor roles. We here describe a newly found interneuron in the Tritonia escape swim neural circuit that fulfills the strict definition of a command neuron (see also Discussion). The properties of this neuron, the dorsal ramp interneuron (DRI), provide further support for the original idea that the command function can be highly localized within a circuit, in this case, by funneling sensory information to the swim central pattern generator (CPG) and thereby controlling whether or not the swim motor program will be activated.When the marine mollusc Tritonia diomedea encounters the tube feet of certain predatory sea stars, it responds with a vigorous rhythmic escape swim, consisting of a series of alternating ventral and dorsal whole-body flexions (14, 15). The neural circuit generating this behavior has been wellstudied and consists of identified populations of afferent neurons (16,17), CPG neurons (18-24), and efferent neuronsThe ...