2020
DOI: 10.21203/rs.3.rs-58816/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

dom2vec: Capturing domain structure and function using self-supervision on protein domain architectures

Abstract: Background: Word embedding approaches have revolutionized natural language processing (NLP) research. These approaches aim to map words to a low-dimensional vector space, in which words with similar linguistic features cluster together. Embedding-based methods have also been developed for proteins, where words are amino acids and sentences are proteins. The learned embeddings have been evaluated qualitatively, via visual inspection of the embedding space and extrinsically, via performance comparison on downstr… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?