2023
DOI: 10.3390/s23136102
|View full text |Cite
|
Sign up to set email alerts
|

Domain Adaptation Based on Semi-Supervised Cross-Domain Mean Discriminative Analysis and Kernel Transfer Extreme Learning Machine

Abstract: Good data feature representation and high precision classifiers are the key steps for pattern recognition. However, when the data distributions between testing samples and training samples do not match, the traditional feature extraction methods and classification models usually degrade. In this paper, we propose a domain adaptation approach to handle this problem. In our method, we first introduce cross-domain mean approximation (CDMA) into semi-supervised discriminative analysis (SDA) and design semi-supervi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?