2022
DOI: 10.48550/arxiv.2207.12248
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Domain Adapting Speech Emotion Recognition modals to real-world scenario with Deep Reinforcement Learning

Abstract: Deep reinforcement learning has been a popular training paradigm as deep learning has gained popularity in the field of machine learning. Domain adaptation allows us to transfer knowledge learnt by a model across domains after a phase of training. The inability to adapt an existing model to a real-world domain is one of the shortcomings of current domain adaptation algorithms. We present a deep reinforcement learning-based strategy for adapting a pre-trained model to a newer domain while interacting with the e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 62 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?