2023
DOI: 10.3390/jimaging9110237
|View full text |Cite
|
Sign up to set email alerts
|

Domain-Aware Few-Shot Learning for Optical Coherence Tomography Noise Reduction

Deborah Pereg

Abstract: Speckle noise has long been an extensively studied problem in medical imaging. In recent years, there have been significant advances in leveraging deep learning methods for noise reduction. Nevertheless, adaptation of supervised learning models to unseen domains remains a challenging problem. Specifically, deep neural networks (DNNs) trained for computational imaging tasks are vulnerable to changes in the acquisition system’s physical parameters, such as: sampling space, resolution, and contrast. Even within t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 55 publications
0
0
0
Order By: Relevance