The Adept Task Learning system is an end-user programming environment that combines programming by demonstration and direct manipulation to support customization by nonprogrammers. Previously, Adept enforced a rigid procedure-authoring workflow consisting of demonstration followed by editing. However, a series of system evaluations with end users revealed a desire for more feedback during learning and more flexibility in authoring. We present a new approach that interleaves incremental learning from demonstration and assisted editing to provide users with a more flexible procedureauthoring experience. The approach relies on maintaining a "soup" of alternative hypotheses during learning, propagating user edits through the soup, and suggesting repairs as needed. We discuss the learning and reasoning techniques that support the new approach and identify the unique interaction design challenges they raise, concluding with an evaluation plan to resolve the design challenges and complete the improved system.