Abstract:In this work, we performed an study about the domain of existence and uniqueness for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite dimensional form. The hypotheses for the operator and starting guess are weaker than in the previous studies. We assume omega continuity condition on second order Fréchet derivative. This fact it is motivated by showing different problems where the nonlinear operators that define the equation do not verify Lipschitz and Hölder co… Show more
“…Obviously G (x) is not bounded on Ω. So, the convergence of scheme (1.2) is not guaranteed by the analysis in [13,14]. In this study we use only assumptions on the first derivative to prove our results.…”
mentioning
confidence: 96%
“…The explosion of technology requires the development of higher convergence schemes. Starting from the quadratically convergent Newton's method higher order schemes develop all the time [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19].…”
mentioning
confidence: 99%
“…Later in [14] the applicability of scheme (1.2) was extended using w-continuity conditions. In general, the convergence domain is small.…”
mentioning
confidence: 99%
“…4. It is worth noticing that method (1.2) is not changing when we use the conditions of Theorem 2.1 instead of the stronger conditions used in [13,14]. Moreover, we can compute the computational order of convergence (COC) defined by…”
We provide a local as well as a semi-local analysis of a fifth convergence order scheme involving operators valued on Banach space for solving nonlinear equations. The convergence domain is extended resulting a finer convergence analysis for both types. This is achieved by locating a smaller domain included in the older domain leading this way to tighter Lipschitz type functions. These extensions are obtained without additional hypotheses. Numerical examples are used to test the convergence criteria and also to show the superiority for our results over earlier ones. Our idea can be utilized to extend other schemes using inverses in a similar way.
RESUMENEntregamos un análisis local y uno semi-local de un esquema de quinto orden de convergencia que involucra operadores con valores en un espacio de Banach para resolver ecuaciones nolineales. El dominio de convergencia es extendido resultando en un análisis de convergencia más fino para ambos tipos. Esto se logra ubicando un dominio más pequeño incluido en el dominio antiguo, entregando funciones de tipo Lipschitz más ajustadas. Estas extensiones se obtienen sin hipótesis adicionales. Se usan ejemplos numéricos para verificar los criterios de convergencia y también para mostrar que nuestros resultados son superiores a otros anteriores. Nuestra idea se puede utilizar para extender otros esquemas usando inversos de manera similar.
“…Obviously G (x) is not bounded on Ω. So, the convergence of scheme (1.2) is not guaranteed by the analysis in [13,14]. In this study we use only assumptions on the first derivative to prove our results.…”
mentioning
confidence: 96%
“…The explosion of technology requires the development of higher convergence schemes. Starting from the quadratically convergent Newton's method higher order schemes develop all the time [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19].…”
mentioning
confidence: 99%
“…Later in [14] the applicability of scheme (1.2) was extended using w-continuity conditions. In general, the convergence domain is small.…”
mentioning
confidence: 99%
“…4. It is worth noticing that method (1.2) is not changing when we use the conditions of Theorem 2.1 instead of the stronger conditions used in [13,14]. Moreover, we can compute the computational order of convergence (COC) defined by…”
We provide a local as well as a semi-local analysis of a fifth convergence order scheme involving operators valued on Banach space for solving nonlinear equations. The convergence domain is extended resulting a finer convergence analysis for both types. This is achieved by locating a smaller domain included in the older domain leading this way to tighter Lipschitz type functions. These extensions are obtained without additional hypotheses. Numerical examples are used to test the convergence criteria and also to show the superiority for our results over earlier ones. Our idea can be utilized to extend other schemes using inverses in a similar way.
RESUMENEntregamos un análisis local y uno semi-local de un esquema de quinto orden de convergencia que involucra operadores con valores en un espacio de Banach para resolver ecuaciones nolineales. El dominio de convergencia es extendido resultando en un análisis de convergencia más fino para ambos tipos. Esto se logra ubicando un dominio más pequeño incluido en el dominio antiguo, entregando funciones de tipo Lipschitz más ajustadas. Estas extensiones se obtienen sin hipótesis adicionales. Se usan ejemplos numéricos para verificar los criterios de convergencia y también para mostrar que nuestros resultados son superiores a otros anteriores. Nuestra idea se puede utilizar para extender otros esquemas usando inversos de manera similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.