Domain-Specific Few-Shot Table Prompt Question Answering via Contrastive Exemplar Selection
Tianjin Mo,
Qiao Xiao,
Hongyi Zhang
et al.
Abstract:As a crucial task in natural language processing, table question answering has garnered significant attention from both the academic and industrial communities. It enables intelligent querying and question answering over structured data by translating natural language into corresponding SQL statements. Recently, there have been notable advancements in the general domain table question answering task, achieved through prompt learning with large language models. However, in specific domains, where tables often h… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.